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Heat Capacity: Classical and Quantum 
 
The development of statistical mechanics was, in part, driven by the physics community striving to 

understand the dependence of heat capacity (at constant volume) on temperature as shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

I. Classical: The Dulong-Petit Law: Ion vibrations 
Equipartition of energy according to Maxwell-Boltzmann statistics claims that each quadratic term in 

(mechanical) energy contributes ½kT in thermal energy.  Each ion thus has mechanical and thermal 
energies of  

 
 

A lattice of N atoms will have N times these energies.  If there is a mole of ions, N = NA and since        
kNA = R (the gas constant), the thermal energy of the lattice is 

 
 
 

The heat capacity at constant volume (CV) is then 
 
 
 

Which is true at high temperatures as shown by the flat region on the plot. 
 

II) Quantum Phonons: Einstein: Phonons: vibrations in lattice 
Einstein postulated that vibrations in the lattice of ions behave as phonons of (a single) energy,        

Eph = ħω that is characterized by an Einstein Temperature 
 
  
 
 

Specific Heat of a Solid Metal
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Since phonons are bosons and any number can occupy the same energy state, he derived the heat capacity 
using Bose-Einstein statistics, finding 

 
  
 
 
 

III) Quantum Phonons: Debye: Phonons 
Debye refined Einstein’s model by including phonons of 

frequencies ranging from zero to a maximum, Debye 
frequency, based on the density and sound speed that gives 
a Debye Temperature. 

 
 
 
 

This allowed him to derive a slightly different heat capacity 
than Einstein: 

 
 
 
The difference between the Einstein and Debye heat capacities are shown in the figure from the 

Wikipedia page.  It is very small, but is important in accurately characterizing heat capacities at very low 
temperatures. 

 
 

IV) Quantum Electrons: Fermi-Dirac: Energy into conduction e-‘s 
Only electrons close to the Fermi Energy can be excited to higher states.   

The thermal energy absorbed is the number of electrons excited times their 
average increase in energy.  From area analysis of the Fermi-Dirac curve, we get 

 
 
 

 
 
For a mole, so that NAk = R, including Sommerfeld’s finding that α = π and taking EF = kTF, the heat 
capacity of the electrons is 

 
 
  

In general, TF » T rendering this a very small effect that is only consequential at very low temperatures. 
 
Total Heat Capacity 

The total heat capacity is the sum of these, though a choice needs to be made between the Einstein 
and Debye models.  The Debye is the more accurate, but the Einstein model is very close.  Thus, 
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http://en.wikipedia.org/wiki/Debye_model 


